Two African fruit flies (Diptera: Tephritidae) produce and respond to similar host marking pheromones

Xavier Cheseto1, 2, Mary Ndung’u2, Peter E. A. Teal3, and Baldwyn Torto1
1International Centre of Insect Physiology and Ecology (icipe), Kenya
2Jomo Kenyatta University of Agriculture and Technology, Kenya
3CMAVE-USDA-ARS, USA
xcheseto@icipe.org

INTRODUCTION

Fruit flies pose a major constraint to large-scale production of fruits in Africa. To combat fruit fly infestation, complementary control tools are required. One such tool is use of host marking pheromones (HMPs) that some gravid female insects employ to mark oviposition substrates to deter conspecifics (and at times heterospecifics) from exploiting the same resource for egg laying. It is known that fruit flies that mark their oviposition substrates do so by producing a marking pheromone, either in the head region and deposited by mouthparts, or in the midgut and stored, then released through the female dragging the protracted ovipositor following egg laying, and thus contaminating the faecal matter with HMPs. In the present work, we isolate, identify, and evaluate HMPs of Ceratitis rosa and Ceratitis fasciventris in the lab, with the aim of exploiting them for pest management.

OBJECTIVES

1. To isolate and identify the potential host-marking pheromone in C. rosa and C. fasciventris.
2. To evaluate the efficacy of synthetic compound of the female-specific compound.

METHODS

Ceratitis rosa
Ceratitis fasciventris

Laboratory evaluation of crude frass and synthetic compound

LC/Q-TOF/MS

Synthetic compound

Bioassay

RESULTS

C. fasciventris female
C. rosa female

Oviposition deterrence bioassay treatments a-e. Crude frass (10 mg/ml) from:
a) C. rosa, b) C. fasciventris, synthetic compound at 3 doses, c) 1 mg/ml, d) 5
mg/ml, and e) 10 mg/ml. In all experiments, the control was 1 ml distilled water
(n=100)

CONCLUSIONS

• C. rosa and C. fasciventris frass contain similar host marking pheromones.
• We identified the key component of the pheromone blend as a nitrogenous compound.
• Future work will focus on testing the pheromone in the field.

REFERENCES

Rhagoletis pomonella (Diptera: tephritidae) and female response to infested fruit. Journal
of Chemical Ecology 13, 167–177.
laboratory test to measure pheromone activity. Entomologia Experimentalis et Applicata 39,163–169.
for potential of managing some African fruit fly species (Diptera: Tephritidae) using the mango fruit fly